Review of Gaussian Elimination and LU Factorization

Ken Kreutz-Delgado
Electrical and Computer Engineering
Jacobs School of Engineering
University of California, San Diego
VERSION ECE174LSGE-S09v1
Copyright © 2006-2009, All Rights Reserved

April 7, 2009

The Elementary Row Matrices (ERM's) $E_{p, q}(\alpha)$ and $P_{p, q}$

Elementary row matrices are defined by the elementary row operations which they perform.

- $E_{p, q}(\alpha)$: Add $\alpha \cdot \operatorname{row}_{p}$ to row_{q}.
I.e., $\operatorname{row}_{q}:=\operatorname{row}_{q}+\alpha \cdot \operatorname{row}_{p}$
$P_{p, q}$: Interchange (Permute) rows p and q.
- $E_{p, q}^{-1}(\alpha)=E_{p, q}(-\alpha), E_{p, q}(\alpha)$ is lower triangular for $p<q$.

$$
E_{2,3}(4)=E_{2,3}(4) I_{3}=E_{2,3}(4)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right]
$$

- $P_{p, q}=P_{p, q}^{-1}=P_{q, p}, P_{p, q}^{2}=I$.

$$
P_{1,3}=P_{1,3} I_{3}=P_{1,3}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

It is important to note that ERM's premultiply the matrix that they are operating one. Also note that $P_{p, q}=P_{p, q}^{T}$, which is true only for an elementary permutation matrix. It is not true for a
general permutation matrix P. A (general) permutation matrix P is defined to be a product of elementary permutation matrices,

$$
P \triangleq P_{p, q} \ldots P_{k, l}
$$

and has the property that

$$
P^{-1}=P^{T} \Leftrightarrow P P^{T}=I .
$$

As mentioned, in general $P \neq P^{T}=P^{-1}$.

Example 1. Gaussian Elimination (GE).

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 5 \\
-1 & -3 & 3 & 0
\end{array}\right] \in \mathbb{R}^{3 \times 4} \\
U \triangleq \underbrace{E_{2,3}(-2) E_{1,3}(1) E_{1,2}(-2)}_{\triangleq \hat{\boldsymbol{L}}} A=\left[\begin{array}{cccc}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Recall that:

- The matrix $U=\hat{L} A$ is said to be in Upper Echelon Form.
- Because \hat{L} is a product of lower triangular matrices, it is itself lower triangular.
- Pivots are 1 and 3. (Pivots cannot have the value 0.)
- Rank of $A \triangleq r(A) \triangleq$ Number of Pivots.
- $r(A)=$ Number of linearly independent columns $=\operatorname{dim} \mathcal{R}(A)$.
- The pivot columns of A are linearly independent and form a basis for $\mathcal{R}(A)$.
- $r(A)=$ Number of linearly independent rows $=\operatorname{dim} R\left(A^{T}\right) \Rightarrow \operatorname{dim} R(A)=\operatorname{dim} R\left(A^{T}\right)$.

$$
\begin{aligned}
& A=E_{1,2}(2) E_{1,3}(-1) E_{2,3}(2) U=L U \text { where } \\
& L \triangleq E_{1,2}(2) E_{1,3}(-1) E_{2,3}(2)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 2 & 1
\end{array}\right]
\end{aligned}
$$

- Note that $L=\hat{L}^{-1}$. The inverse of a lower (respectively, upper) triangular invertible matrix is always a lower (upper) triangular matrix.
- Note the pattern which holds between the elements of L and its factors $E_{p, q}(\alpha)$. (This pattern does not hold for the elements of \hat{L}).

Example 2. GE with Row Exchange.

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 3 \\
2 & 5 & 8
\end{array}\right], \quad \mathrm{r}(\mathrm{~A})=3 \\
P_{2,3} E_{1,3}(-2) E_{1,2}(-1) A=U=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 3 & 6 \\
0 & 0 & 2
\end{array}\right] \\
\Longrightarrow E_{1,2}(-2) E_{1,3}(-1) P_{2,3} A=U \\
\Longrightarrow \underbrace{P_{2,3} A}_{\triangleq \boldsymbol{A}^{\prime}}=E_{1,3}(1) E_{1,2}(2) U=L U=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
\end{gathered}
$$

LU Factorization

We have shown that there is an equivalence between Gaussian elimination (which you first encounter in middle school) and $L U$ factorization. Without loss of generality, one often discusses the simpler problem $A=L U$. This is because one can always "fix" a matrix A for which this is not true via the transformation $A \leftarrow A^{\prime}=P A$, where P is a product of elementary permutation matrices which rearranges the rows of A.

We often want an even simpler structure. Namely, we would like the pivots of A to be on the main diagonal of U. Thus U of example 2 is OK in this regard, while U of example 1 can be placed into the simpler diagonal form by permuting columns 2 and 3 . This natural leads us to a discussion of elementary column matrices.

Elementary Column Matrices

Postmultiplication of a matrix A by an elementary matrix results in an elementary column operation. In particular postmultiplication a matrix A by the elementary permutation matrix $P_{p, q}$ results in a swapping of column p with column q. As before, $P_{p, q}^{-1}=P_{p, q}=P_{p, q}^{T}$.

Example 1 continued.

$$
\hat{L} A=\left[\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{gathered}
\hat{L} A P_{2,3}= \\
\underbrace{A P_{2,3}}_{\boldsymbol{A}^{\prime}}=L U \\
\left.\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 3 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]=U \\
\end{gathered}
$$

Thus the transformed matrix A^{\prime} has an $L U$ factorization where L is lower triangular and U is upper echelon with pivots on the diagonal.

Most generally, if we premultiply a matrix A from the left by a permutation matrix P_{L} (to rearrange the rows) and postmultiply from the right by a permutation matrix P_{R} (to rearrange the columns) we can always place A into a form A^{\prime} which has an $L U$ factorization with the pivots on the diagonal of U,

$$
A^{\prime}=P_{L} A P_{R}=L U .
$$

For ease of exposition, and without loss of generality, in most discussions of LU factorization it is common to assume the simpler case that $A=L U$, where L is lower triangular and U is upper echelon with pivots on the diagonal. This is because one can always "fix" A to ensure that this is true via the transformation $A \leftarrow A^{\prime}=P_{L} A P_{R}$.

Solving the Linear Inverse Problem $\boldsymbol{A x}=\boldsymbol{b}$

The same row operations \hat{L} acting on both sides of the equation $A x=b$ preserves equality,

$$
A x=b \Longrightarrow \hat{L} A x=\hat{L} b .
$$

The simultaneous operation of \hat{L} on A and b can be written in the equivalent form

$$
\left(\begin{array}{ll}
A & b
\end{array}\right) \Longrightarrow \hat{L}\left(\begin{array}{ll}
A & b
\end{array}\right)=\left(\begin{array}{ll}
\hat{L} A & \underbrace{\hat{L} b}_{\triangleq \boldsymbol{c}}
\end{array}\right)
$$

Example 1 continued.

With $\hat{L}=E_{2,3}(-2) E_{1,3}(1) E_{1,2}(-2)$ then

$$
b=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \Longrightarrow c=\hat{L} b=\left[\begin{array}{c}
b_{1} \\
b_{2}-2 b_{1} \\
b_{3}-2 b_{2}+5 b_{1}
\end{array}\right]
$$

Alternatively, one can find the value of c by solving the system $L c=b$ using forward substitution. Once the value of c has been determined, we can then focus on the system $\hat{L} A x=c$. Thus

$$
\underbrace{\hat{L} A P_{2,3}}_{U} \underbrace{P_{2,3}^{T} x}_{\bar{x}}=c
$$

$$
\begin{align*}
& P_{2,3}^{T} x=P_{2,3}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{2} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2} \\
\bar{x}_{3} \\
\bar{x}_{4}
\end{array}\right]=\bar{x} \\
& \underbrace{\left[\begin{array}{ll|ll}
1 & 3 & 3 & 2 \\
0 & 3 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2} \\
\bar{x}_{3} \\
\bar{x}_{4}
\end{array}\right]}_{\bar{x}}=c \tag{1}\\
& \underbrace{\left[\begin{array}{c|c}
U_{1} & U_{2} \\
0 & 0
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{c}
\bar{x}_{b} \\
\bar{x}_{f}
\end{array}\right]}_{\bar{x}}=c
\end{align*}
$$

with

$$
U_{1}=\left[\begin{array}{ll}
1 & 3 \\
0 & 3
\end{array}\right], \quad U_{2}=\left[\begin{array}{ll}
3 & 2 \\
0 & 1
\end{array}\right], \quad \bar{x}_{b}=\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right], \quad \text { and } \quad \bar{x}_{f}=\left[\begin{array}{l}
\bar{x}_{3} \\
\bar{x}_{4}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{4}
\end{array}\right] .
$$

Note the following about the above:

- The r pivot columns are the first r columns of U which we assemble into the matrix U_{1}. The remaining columns of U are assembled into the matrix U_{2}.
- The components of \bar{x}_{b}, \bar{x}_{1} and \bar{x}_{2} (i.e. the original components x_{1} and x_{3}), are known as basic variables. They correspond to the columns of U (and the columns of A) with pivots.
- The components of \bar{x}_{f}, \bar{x}_{3} and \bar{x}_{4} (i.e. x_{2} and x_{4}), are known as free variables. They correspond to the columns of U (and columns the columns of A) without pivots.

More generally, for an arbitrary $m \times n$ matrix A of rank r we have

$$
P_{L} A P_{R}=L U=L\left[\begin{array}{c|c}
U_{1} & U_{2} \\
\hline 0 & 0
\end{array}\right]=L\left[\begin{array}{cccc|ccc}
p_{1} & \times & \cdots & \times & \times & \cdots & \times \\
0 & p_{2} & \cdots & \times & \times & \cdots & \times \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & p_{r} & \times & \cdots & \times \\
\hline 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

where

$$
U_{1}=\left[\begin{array}{ccc}
p_{1} & \cdots & \times \\
\vdots & \ddots & \vdots \\
0 & \cdots & p_{r}
\end{array}\right]
$$

K. Kreutz-Delgado - Copyright © 2006, All Rights Reserved - Version ECE174LSGE-S06v1
is an upper-triangular and invertible $r \times r$ matrix with the r (nonzero) pivots on the diagonal. We also have

$$
\bar{x}=\left[\begin{array}{l}
\bar{x}_{b} \\
\bar{x}_{f}
\end{array}\right]=P_{R}^{T} x
$$

where the components of $\bar{x}_{b} \in \mathbb{R}^{r}$ are the basic variables and the components of $\bar{x}_{f} \in \mathbb{R}^{n}$ are the free variables. Thus under the action of a succession of elementary matrix operations (which we commonly referred to as Gaussian Elimination) we obtain

$$
A x=b \Longrightarrow \underbrace{\hat{L} P_{L} A P_{R}}_{\mathbf{U}} \underbrace{P_{R}^{T} x}_{\overline{\boldsymbol{x}}}=\underbrace{\hat{L} P_{L} b}_{\mathbf{c}}
$$

so that $A x=b$ has been transformed into the equivalent system

$$
U \bar{x}=c \quad \Longleftrightarrow \quad\left[\begin{array}{c|c}
U_{1} & U_{2} \\
\hline 0 & 0
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{b} \\
\hline \bar{x}_{f}
\end{array}\right]=\left[\begin{array}{l}
c_{u} \\
\hline c_{\ell}
\end{array}\right] .
$$

Note that by partitioning the matrix $\hat{L}=L^{-1}$ as $\hat{L}=\binom{\hat{L}_{u}}{\hat{L}_{\ell}}$ the vector $c=\hat{L} P_{L} b$ has the structure

$$
c=\left[\begin{array}{l}
c_{u} \\
c_{\ell}
\end{array}\right]=\left[\begin{array}{c}
\hat{L}_{u} \\
\hat{L}_{\ell}
\end{array}\right] P_{L} b=\left[\begin{array}{c}
\hat{L}_{u} P_{L} b \\
\hat{L}_{\ell} P_{L} b
\end{array}\right]
$$

so that

$$
c_{u}=\hat{L}_{u} P_{L} b \quad \text { and } \quad c_{\ell}=\hat{L} P_{L} b
$$

Lemma 1. The system $A x=b$ has a solution (i.e., the system is consistent) iff $c_{\ell}=\hat{L}_{\ell} P_{L} b=0$.

Proof: If $A x=b$ has a solution, then $U \bar{x}=c$ must be consistent which implies that $c_{\ell}=0$. On the other hand, if $c_{\ell}=0$, then the system $U \bar{x}=c$ is consistent and $U_{1} \bar{x}_{b}=c_{u}-U_{2} \bar{x}_{f}$ can be solved for a particular solution by taking $\bar{x}_{f}=0$ and solving $U_{1} \bar{x}_{b}=c_{b}$ for \bar{x}_{b} by backsubstitution.

Corollary 1. $\quad b \in \mathcal{R}(A)$ iff $c_{\ell}=\hat{L}_{\ell} P_{L} b=0$.

Example 1 continued.

Under a sequence of GE steps,

$$
\underbrace{\hat{L} A P_{2,3}}_{\mathbf{U}} \underbrace{P_{2,3}^{T} x}_{\overline{\boldsymbol{x}}}=\underbrace{\hat{L} b}_{\mathbf{c}}
$$

we have transformed the system $A x=b$ of Example 1 into the equivalent form

$$
U \bar{x}=c \Longleftrightarrow\left[\begin{array}{ll|ll}
1 & 3 & 3 & 2 \\
0 & 3 & 0 & 1 \\
\hline 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\bar{x}_{1} \\
\bar{x}_{2} \\
\bar{x}_{3} \\
\bar{x}_{4}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\hline c_{3}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2}-2 b_{1} \\
\hline b_{3}-2 b_{2}+5 b_{1}
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\overbrace{\hat{L}_{\ell}}^{\overbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
5 & -2 & 1
\end{array}\right]}^{\hat{L}_{u}}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]}} \\
c_{\ell}=\hat{L}_{\ell} b=\left[\begin{array}{lll}
5 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=5 b_{1}-2 b_{2}+b_{3}
\end{gathered}
$$

Therefore a solution exists iff $5 b_{1}-2 b_{2}+b_{3}=0$ and all b vectors whose components satisfy this condition are in $\mathcal{R}(A)$.

To determine a particular solution, x_{p}, for a consistent system of equations, we can take $\bar{x}_{f}=0$ and solve

$$
U_{1} \bar{x}_{b}=c_{u}
$$

via backsubstitution. Note that $\bar{x}=P_{2,3} x \Longrightarrow x=P_{2,3} \bar{x}=P_{2,3}\left[\begin{array}{l}\bar{x}_{b} \\ \bar{x}_{f}\end{array}\right]$. Thus $\bar{x}_{f}=0$ implies that $x_{2}=0$ and $x_{4}=0$. Also note that $\bar{x}_{2}=x_{3}$ and $\bar{x}_{1}=x_{1}$. Setting $\bar{x}_{f}=0$ yields

$$
\underbrace{\left[\begin{array}{ll}
1 & 3 \\
0 & 3
\end{array}\right]}_{\mathbf{U}_{\mathbf{1}}} \underbrace{\left[\begin{array}{c}
\bar{x}_{1} \\
\bar{x}_{2}
\end{array}\right]}_{\overline{\mathbf{x}}_{\mathbf{b}}}=\underbrace{\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]}_{\mathbf{c}_{\mathbf{u}}}=\underbrace{\left[\begin{array}{c}
b_{1} \\
b_{2}-2 b_{1}
\end{array}\right]}_{\hat{\mathbf{L}}_{\mathbf{u}}}
$$

which can be easily solved via back substitution,

$$
\begin{gathered}
x_{3}=\bar{x}_{2}=\frac{1}{3}\left(b_{2}-2 b_{1}\right) \\
x_{1}=\bar{x}_{1}=b_{1}-3 \bar{x}_{2}=b_{1}-b_{2} .
\end{gathered}
$$

Thus, we have obtained the particular solution

$$
x=x_{p}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
b_{1}-b_{2} \\
0 \\
\frac{1}{3}\left(b_{2}-2 b_{1}\right) \\
0
\end{array}\right]
$$

provided that $5 b_{1}-2 b_{2}+b_{3}=0$ For example, take $b=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$, then $5 b_{1}-2 b_{2}+b_{3}=-2+2=0$ and $x_{p}=\left[\begin{array}{c}-1 \\ 0 \\ \frac{1}{3} \\ 0\end{array}\right]$ is a particular solution for the system $A x=b$.

Lemma 2. Let A be $m \times n$. The system $A x=b$ has a solution for $a n y$ vector b iff $r=\operatorname{rank}(A)=m$.
Proof: If $r=m$, then $c_{\ell} \in \mathbb{R}^{m-r}$ is nonexistent and the system $U \bar{x}=b$ is always consistent.

Corollary 2. $\mathcal{R}(A)=\mathbb{R}^{m}$ iff $r=\operatorname{rank}(A)=m$. This is also a consequence of the fact that

$$
\operatorname{dim} \mathcal{R}(A)=r=\text { number of pivot columns. }
$$

Recall that for an $m \times n$ matrix A :

- $m=$ number of rows, $n=$ number of columns.
- $r=\operatorname{rank}(A)=$ number of rows with pivots $\leq m$.
- $r=\operatorname{rank}(A)=$ number of columns with pivots $\leq n$.
- $r=\operatorname{rank}(A) \leq \min (m, n)$.
- when $r=m$, the matrix A is said to have full row rank.
- when $r=n$, the matrix A is said to have full column rank.
- If $r=\min (m, n)$, i.e. if A has either full row rank or full column rank, then A is full rank.
- If $r<\min (m, n)$, i.e. if A has neither full row rank nor full column rank, then A is said to be rank deficient.

Lemma 3 (Rank Test). The system $A x=b$ has a solution iff $r(A)=r([A b])$.
Proof: Assume, with no loss of generality, that $\hat{L} A=U, A=L U$. Then

$$
\hat{L}\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{ll}
\hat{L} A & \hat{L} b
\end{array}\right]=\left[\begin{array}{ll}
U & c
\end{array}\right]=\left[\begin{array}{c|c|c}
U_{1} & U_{2} & c_{u} \\
\hline 0 & 0 & c_{\ell}
\end{array}\right]
$$

Note that

$$
r(A)=r(U)=\text { number of nonzero rows of } U
$$

while

$$
r([A b])=r\left(\left[\begin{array}{ll}
U & c
\end{array}\right]\right)=\text { number of nonzero rows of }[U c] .
$$

Then $r(A)=r\left[\begin{array}{ll}A & b\end{array}\right]$ iff $c_{\ell}=0$ which, in turn, is true iff $A x=b$ has a solution by Lemma 1 .

Characterization of the Nullspace $\mathcal{N}(\boldsymbol{A})$

Up to a possible need to permute columns and/or rows of a matrix, we have seen that Gaussian elimination results in a system in the partitioned form

$$
\underbrace{\left[\begin{array}{c|c}
U_{1} & U_{2} \\
\hline 0 & 0
\end{array}\right]}_{\hat{\boldsymbol{L}} \boldsymbol{A}=\boldsymbol{U}}\left[\begin{array}{c}
x_{b} \\
x_{f}
\end{array}\right]=\underbrace{\underbrace{}_{c_{u}}}_{\hat{\boldsymbol{L}} \boldsymbol{b}=\boldsymbol{c}}
$$

Note that

$$
x \in \mathcal{N}(A) \quad \Longleftrightarrow \quad A x=L U x=0 \quad \Longleftrightarrow \quad U x=0 \quad \Longleftrightarrow \quad x \in \mathcal{N}(U)
$$

yielding the very useful result that

$$
\mathcal{N}(A)=\mathcal{N}(U)
$$

This means that if we can characterize the vectors in the nullspace of U (i.e., determine those vectors x for which $U x=0$) then we have characterized the vectors in the nullspace of A (i.e., those vectors x for which $A x=0)$. The condition for $x \in \mathcal{N}(U)$ is

$$
U x=\left[\begin{array}{c|c}
U_{1} & U_{2} \\
\hline 0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{b} \\
x_{f}
\end{array}\right]=0 \Longleftrightarrow U_{1} x_{b}=-U_{2} x_{f} \Longleftrightarrow x_{b}=-U_{1}^{-1} U_{2} x_{f}
$$

Thus,

$$
\begin{aligned}
x \in \mathcal{N}(A) & \Longleftrightarrow x \in \mathcal{N}(U) \\
& \Longleftrightarrow U_{1} x_{b}=-U_{2} x_{f} \\
& \Longleftrightarrow x_{b}=-U_{a}^{-1} U_{2} x_{f} \\
& \Longleftrightarrow x=\left[\begin{array}{c}
x_{b} \\
x_{f}
\end{array}\right]=\left[\begin{array}{c}
-U_{1}^{-1} U_{2} x_{f} \\
x_{f}
\end{array}\right]=\left[\begin{array}{c}
-U_{1}^{-1} U_{2} \\
I
\end{array}\right] x_{f}=N x_{f}
\end{aligned}
$$

where

$$
\begin{aligned}
& N=\left[\begin{array}{c}
-U_{1}^{-1} U_{2} \\
I
\end{array}\right] \in \mathbb{R}^{n \times \nu} \\
& v=n-r=\operatorname{dim} \mathcal{N}(A) .
\end{aligned}
$$

The dimension of the nullspace of A, ν, is known as the nullity of A and is given by $n-\operatorname{rank}(A)$.
The ν columns of the matrix N are linearly independent and span the nullspace of A. Thus the columns of A form a basis for $\mathcal{N}(A)$. Every nullspace vector x must be of the form $x=N x_{f}$ showing that the ν components of the ν-dimensional vector x_{f} completely parameterizes the nullspace of A.

As mentioned, the columns of $N, n_{k}, k=1, \cdots, \nu$, provide a basis for $\mathcal{N}(A)$. We can mathematical determine n_{k} as follows. Define the canonical basis vector e_{k} by

$$
e_{k}=(0 \cdots 010 \cdots 0)^{T}
$$

which is the vector with all zero components except for the value " 1 " for the k-th component. Now note that taking $x_{f}=e_{k}$ yields $x=N e_{k}=n_{k} \in N(A)$.

$$
n_{k}=N e_{k}=\left[\begin{array}{c}
-U_{1}^{-1} U_{2} e_{k} \\
e_{k}
\end{array}\right]=\left[\begin{array}{c}
n_{k}^{(u)} \\
e_{k}
\end{array}\right] \Rightarrow U_{1} n_{k}^{(u)}=-U_{2} e_{k}
$$

Example 1 continued.

Recalling a column permutation has been performed, we have $x \in \mathcal{N}(A)$ iff $\bar{x} \in \mathcal{N}(U)$, which is true iff

$$
\left[\begin{array}{cc}
U_{1} & U_{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{b} \\
\bar{x}_{f}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which gives the condition

$$
\left[\begin{array}{ll|ll}
1 & 3 & 3 & 2 \\
0 & 3 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2} \\
\hline \bar{x}_{3} \\
\bar{x}_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

which, in turn, implies that

$$
U_{1} \bar{x}_{b}=-U_{2} \bar{x}_{f} \Longleftrightarrow\left[\begin{array}{ll}
1 & 3 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2}
\end{array}\right]=-\left[\begin{array}{ll}
3 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{3} \\
\bar{x}_{4}
\end{array}\right] .
$$

To determine $\nu=n-4=4-2=2$ null spaces basis vectors, we set \bar{x}_{f} equal to e_{1} and e_{2} as follows,

$$
\begin{aligned}
& \bar{x}_{f}=e_{1}=\binom{1}{0} \Rightarrow \bar{n}_{1}=\left(\begin{array}{c}
-3 \\
0 \\
1 \\
0
\end{array}\right) \Rightarrow n_{1}=\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right) \\
& \bar{x}_{f}=e_{2}=\binom{0}{1} \Rightarrow \bar{n}_{2}=\left(\begin{array}{c}
-1 \\
-\frac{1}{3} \\
0 \\
1
\end{array}\right) \Rightarrow n_{2}=\left(\begin{array}{c}
-1 \\
0 \\
-\frac{1}{3} \\
1
\end{array}\right)
\end{aligned}
$$

It is easily checked that $A n_{1}=A n_{2}=0$. The two basis vectors form the columns of the matrix $N \in \mathbb{R}^{n \times \nu}=\mathbb{R}^{4 \times 2}$,

$$
N=\left[\begin{array}{ll}
n_{1} & n_{2}
\end{array}\right]=\left[\begin{array}{cc}
-3 & -1 \\
1 & 0 \\
0 & -\frac{1}{3} \\
0 & 1
\end{array}\right]
$$

Note that a general nullspace vector $x_{0} \in \mathcal{N}(A)$ has the form

$$
x_{0}=N \bar{x}_{f}=x_{2} n_{1}+x_{4} n_{2}
$$

Whenever the consistency condition

$$
c_{f}=\hat{L}_{f} b=5 b_{1}-2 b_{2}+b_{3}=0
$$

is satisfied, then $b \in \mathcal{R}(A)$ and the system $A x=b$ has the particular solution x_{p} determined above. In this case, a general solution is given by

$$
x=x_{p}+x_{0}=\underbrace{\left[\begin{array}{c}
b_{1}-b_{2} \\
0 \\
\frac{1}{3}\left(b_{2}-2 b_{1}\right) \\
0
\end{array}\right]}_{\boldsymbol{x}_{p}}+\underbrace{x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
0 \\
-\frac{1}{3} \\
1
\end{array}\right]}_{\boldsymbol{x}_{\mathbf{0}}=\boldsymbol{N} \overline{\boldsymbol{x}}_{\boldsymbol{f}}=\boldsymbol{x}_{\mathbf{2}} \boldsymbol{n}_{\mathbf{1}}+\boldsymbol{x}_{\mathbf{4}} \boldsymbol{n}_{\mathbf{2}}}
$$

Note that we have an uncountable infinity of possible solutions.

Lemma 4. Let A be $m \times n$ and $b \in \mathcal{R}(A)$. Then exists a unique solution to the system $A x=b$ iff $r=n$.

Proof: $r=n \Longleftrightarrow \nu=n-r=0 \Longleftrightarrow \operatorname{dim} \mathcal{N}(A)=\nu=0 \Longleftrightarrow \mathcal{N}(A)=\{0\}$.
Corollary 4a. When A is square, $A \in \mathbb{R}^{n \times n}$, then the system $A x=b$ has a unique solution for all $b \in \mathbb{R}^{n}$ iff $r=n$. The solution is given by $x=A^{-1} b$.

Proof: A straightforward consequence of Lemma 2 and Lemma 4, noting that $r=n=m$.
Corollary 4b. If $A \in \mathbb{R}^{n \times m}$ has $m<n$ then a solution to $A x=b$ for $b \in \mathcal{R}(A) m u s t$ be nonunique. Furthermore, if $r=m$ (so that A has full row rank), $A x=b$ must be (nonuniquely) solvable for all $b \in \mathbb{R}^{m}$.

Concluding Remarks

Via the use of Gaussian Elimination and LU factorization applied to an $m \times n$ matrix A, one can directly determine the dimensions of all of the subspaces associated with A and basis vectors for the range and nullspace of A. One can also do the same for the matrix found by transposing A, $A^{T} .{ }^{1}$

[^0]
[^0]: ${ }^{1}$ Although we do not discuss it here, one can actually obtain bases for the range and nullspace of A^{T} by a further processing of the LU factorization found for A itself.

