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The Elementary Row Matrices (ERM’s) Ep,q(α) and Pp,q

Elementary row matrices are defined by the elementary row operations which they perform.

• Ep,q(α) : Add α · rowp to rowq.
I.e., rowq := rowq + α · rowp

Pp,q : Interchange (Permute) rows p and q.

• E−1
p,q (α) = Ep,q(−α), Ep,q(α) is lower triangular for p < q.

E2,3(4) = E2,3(4) I3 = E2,3(4)

1 0 0
0 1 0
0 0 1

 =

1 0 0
0 1 0
0 4 1


• Pp,q = P−1

p,q = Pq,p, P 2
p,q = I.

P1,3 = P1,3 I3 = P1,3

1 0 0
0 1 0
0 0 1

 =

0 0 1
0 1 0
1 0 0



It is important to note that ERM’s premultiply the matrix that they are operating one. Also note
that Pp,q = P Tp,q, which is true only for an elementary permutation matrix. It is not true for a
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general permutation matrix P . A (general) permutation matrix P is defined to be a product of
elementary permutation matrices,

P , Pp,q . . . Pk,l

and has the property that
P−1 = P T ⇔ PP T = I.

As mentioned, in general P 6= P T = P−1.

Example 1. Gaussian Elimination (GE).

A =

 1 3 3 2
2 6 9 5
−1 −3 3 0

 ∈ R3×4

U , E2,3(−2)E1,3(1)E1,2(−2)︸ ︷︷ ︸
, L̂

A =

1 3 3 2
0 0 3 1
0 0 0 0


Recall that:

• The matrix U = L̂A is said to be in Upper Echelon Form.

• Because L̂ is a product of lower triangular matrices, it is itself lower triangular.

• Pivots are 1 and 3. (Pivots cannot have the value 0.)

• Rank of A , r(A) , Number of Pivots.

• r(A) = Number of linearly independent columns = dim R(A).

• The pivot columns of A are linearly independent and form a basis for R(A).

• r(A) = Number of linearly independent rows = dim R(AT ) ⇒ dim R(A) = dim R(AT ).

A = E1,2(2)E1,3(−1)E2,3(2)U = LU where

L , E1,2(2)E1,3(−1)E2,3(2) =

 1 0 0
2 1 0
−1 2 1


• Note that L = L̂−1. The inverse of a lower (respectively, upper) triangular invertible matrix

is always a lower (upper) triangular matrix.

• Note the pattern which holds between the elements of L and its factors Ep,q(α). (This pattern
does not hold for the elements of L̂).

���
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Example 2. GE with Row Exchange.

A =

1 1 1
1 1 3
2 5 8

 , r(A) = 3

P2,3E1,3(−2)E1,2(−1)A = U =

1 1 1
0 3 6
0 0 2


=⇒ E1,2(−2)E1,3(−1)P2,3A = U

=⇒ P2,3A︸ ︷︷ ︸
, A′

= E1,3(1)E1,2(2)U = LU =

1 0 0
2 1 0
1 0 1


���

LU Factorization

We have shown that there is an equivalence between Gaussian elimination (which you first encounter
in middle school) and LU factorization. Without loss of generality, one often discusses the simpler
problem A = LU . This is because one can always “fix” a matrix A for which this is not true via
the transformation A← A′ = PA, where P is a product of elementary permutation matrices which
rearranges the rows of A.

We often want an even simpler structure. Namely, we would like the pivots of A to be on the main
diagonal of U . Thus U of example 2 is OK in this regard, while U of example 1 can be placed into
the simpler diagonal form by permuting columns 2 and 3. This natural leads us to a discussion of
elementary column matrices.

Elementary Column Matrices

Postmultiplication of a matrix A by an elementary matrix results in an elementary column operation.
In particular postmultiplication a matrix A by the elementary permutation matrix Pp,q results in
a swapping of column p with column q. As before, P−1

p,q = Pp,q = P Tp,q.

Example 1 continued.

L̂ A =

1 3 3 2
0 0 3 1
0 0 0 0


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L̂ AP2,3 =

1 3 3 2
0 3 0 1
0 0 0 0

 = U

AP2,3︸ ︷︷ ︸
A′

= LU.

Thus the transformed matrix A′ has an LU factorization where L is lower triangular and U is
upper echelon with pivots on the diagonal.

���

Most generally, if we premultiply a matrix A from the left by a permutation matrix PL (to rearrange
the rows) and postmultiply from the right by a permutation matrix PR (to rearrange the columns)
we can always place A into a form A′ which has an LU factorization with the pivots on the diagonal
of U ,

A′ = PLAPR = LU .

For ease of exposition, and without loss of generality, in most discussions of LU factorization it
is common to assume the simpler case that A = LU , where L is lower triangular and U is upper
echelon with pivots on the diagonal. This is because one can always “fix” A to ensure that this is
true via the transformation A← A′ = PLAPR.

Solving the Linear Inverse Problem Ax = b

The same row operations L̂ acting on both sides of the equation Ax = b preserves equality,

Ax = b =⇒ L̂Ax = L̂b .

The simultaneous operation of L̂ on A and b can be written in the equivalent form

(A b) =⇒ L̂ (A b) = (L̂ A L̂ b︸︷︷︸
, c

)

Example 1 continued.

With L̂ = E2,3(−2)E1,3(1)E1,2(−2) then

b =

b1b2
b3

 =⇒ c = L̂ b =

 b1
b2 − 2b1

b3 − 2b2 + 5b1


Alternatively, one can find the value of c by solving the system Lc = b using forward substitution.
Once the value of c has been determined, we can then focus on the system L̂Ax = c. Thus

L̂AP2,3︸ ︷︷ ︸
U

P T2,3 x︸ ︷︷ ︸
x̄

= c
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P T2,3 x = P2,3


x1

x2

x3

x4

 =


x1

x3

x2

x4

 =


x̄1

x̄2

x̄3

x̄4

 = x̄

1 3 3 2
0 3 0 1
0 0 0 0


︸ ︷︷ ︸

U


x̄1

x̄2

x̄3

x̄4


︸ ︷︷ ︸
x̄

= c (1)

[
U1 U2

0 0

]
︸ ︷︷ ︸

U

[
x̄b
x̄f

]
︸ ︷︷ ︸
x̄

= c

with

U1 =
[
1 3
0 3

]
, U2 =

[
3 2
0 1

]
, x̄b =

[
x̄1

x̄2

]
=
[
x1

x3

]
, and x̄f =

[
x̄3

x̄4

]
=
[
x2

x4

]
.

Note the following about the above:

• The r pivot columns are the first r columns of U which we assemble into the matrix U1. The
remaining columns of U are assembled into the matrix U2.

• The components of x̄b, x̄1 and x̄2 (i.e. the original components x1 and x3), are known as basic
variables. They correspond to the columns of U (and the columns of A) with pivots.

• The components of x̄f , x3 and x4 (i.e. x2 and x4), are known as free variables. They
correspond to the columns of U (and columns the columns of A) without pivots.

���

More generally, for an arbitrary m× n matrix A of rank r we have

PLAPR = LU = L

[
U1 U2

0 0

]
= L



p1 × · · · × × · · · ×
0 p2 · · · × × · · · ×
...

. . . . . .
...

...
. . .

...
0 · · · 0 pr × · · · ×
0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0


where

U1 =

p1 · · · ×
...

. . .
...

0 · · · pr


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is an upper-triangular and invertible r× r matrix with the r (nonzero) pivots on the diagonal. We
also have

x̄ =
[
x̄b
x̄f

]
= P TR x

where the components of x̄b ∈ Rr are the basic variables and the components of x̄f ∈ Rn are the
free variables. Thus under the action of a succession of elementary matrix operations (which we
commonly referred to as Gaussian Elimination) we obtain

Ax = b =⇒ L̂ PLAPR︸ ︷︷ ︸
U

P TR x︸ ︷︷ ︸
x̄

= L̂ PLb︸ ︷︷ ︸
c

so that Ax = b has been transformed into the equivalent system

Ux̄ = c ⇐⇒
[
U1 U2

0 0

] [
x̄b
x̄f

]
=
[
cu
c`

]
.

Note that by partitioning the matrix L̂ = L−1 as L̂ =
(L̂u

L̂`

)
the vector c = L̂PLb has the structure

c =
[
cu
c`

]
=
[
L̂u
L̂`

]
PLb =

[
L̂uPLb

L̂`PLb

]
so that

cu = L̂uPLb and c` = L̂PLb .

Lemma 1. The system Ax = b has a solution (i.e., the system is consistent) iff c` = L̂`PLb = 0.

Proof: If Ax = b has a solution, then Ux̄ = c must be consistent which implies that c` = 0.
On the other hand, if c` = 0, then the system Ux̄ = c is consistent and U1x̄b = cu − U2x̄f can be
solved for a particular solution by taking x̄f = 0 and solving U1x̄b = cb for x̄b by backsubstitution. �

Corollary 1. b ∈ R(A) iff c` = L̂`PLb = 0.

Example 1 continued.

Under a sequence of GE steps,
L̂AP2,3︸ ︷︷ ︸

U

P T2,3x︸ ︷︷ ︸
x̄

= L̂b︸︷︷︸
c

,

we have transformed the system Ax = b of Example 1 into the equivalent form

Ux̄ = c ⇐⇒

1 3 3 2
0 3 0 1
0 0 0 0



x̄1

x̄2

x̄3

x̄4

 =

c1

c2

c3

 =

 b1
b2 − 2b1

b3 − 2b2 + 5b1


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c1

c2

c3

 =

L̂u︷ ︸︸ ︷ 1 0 0
−2 1 0
5 −2 1


︸ ︷︷ ︸

L̂`

b1b2
b3



c` = L̂`b =
[
5 −2 1

] b1b2
b3

 = 5b1 − 2b2 + b3

Therefore a solution exists iff 5b1 − 2b2 + b3 = 0 and all b vectors whose components satisfy this
condition are in R(A).

To determine a particular solution, xp, for a consistent system of equations, we can take x̄f = 0
and solve

U1x̄b = cu

via backsubstitution. Note that x̄ = P2,3x =⇒ x = P2,3x̄ = P2,3

[
x̄b
x̄f

]
. Thus x̄f = 0 implies that

x2 = 0 and x4 = 0. Also note that x̄2 = x3 and x̄1 = x1. Setting x̄f = 0 yields[
1 3
0 3

]
︸ ︷︷ ︸

U1

[
x1

x2

]
︸︷︷︸

x̄b

=
[
c1

c2

]
︸︷︷︸

cu

=
[

b1
b2 − 2b1

]
︸ ︷︷ ︸

L̂ub

which can be easily solved via back substitution,

x3 = x̄2 =
1
3

(b2 − 2b1)

x1 = x̄1 = b1 − 3x2 = b1 − b2 .

Thus, we have obtained the particular solution

x = xp =


x1

x2

x3

x4

 =


b1 − b2

0
1
3(b2 − 2b1)

0



provided that 5b1 − 2b2 + b3 = 0 For example, take b =

0
1
2

, then 5b1 − 2b2 + b3 = −2 + 2 = 0 and

xp =


−1
0
1
3
0

 is a particular solution for the system Ax = b. ���

Lemma 2. Let A be m×n. The system Ax = b has a solution for any vector b iff r = rank(A) = m.

Proof: If r = m, then c` ∈ Rm−r is nonexistent and the system Ux̄ = b is always consistent. �
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Corollary 2. R(A) = Rm iff r = rank(A) = m. This is also a consequence of the fact that

dimR(A) = r = number of pivot columns.

Recall that for an m× n matrix A:

• m = number of rows, n = number of columns.

• r = rank(A) = number of rows with pivots ≤ m.

• r = rank(A) = number of columns with pivots ≤ n.

• r = rank(A) ≤ min(m,n).

• when r = m, the matrix A is said to have full row rank.

• when r = n, the matrix A is said to have full column rank.

• If r = min(m,n), i.e. if A has either full row rank or full column rank, then A is full rank.

• If r < min(m,n), i.e. if A has neither full row rank nor full column rank, then A is said to be
rank deficient.

Lemma 3 (Rank Test). The system Ax = b has a solution iff r(A) = r([A b]).

Proof: Assume, with no loss of generality, that L̂A = U , A = LU . Then

L̂
[
A b

]
=
[
L̂A L̂b

]
=
[
U c

]
=
[
U1 U2 cu
0 0 c`

]
.

Note that
r(A) = r(U) = number of nonzero rows of U

while
r([A b]) = r([U c]) = number of nonzero rows of [U c] .

Then r(A) = r
[
A b

]
iff c` = 0 which, in turn, is true iff Ax = b has a solution by Lemma 1. �

Characterization of the Nullspace N (A)

Up to a possible need to permute columns and/or rows of a matrix, we have seen that Gaussian
elimination results in a system in the partitioned form[

U1 U2

0 0

]
︸ ︷︷ ︸

L̂A = U

[
xb
xf

]
=
[
cu
c`

]
︸︷︷︸

L̂b = c
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Note that

x ∈ N (A) ⇐⇒ Ax = LUx = 0 ⇐⇒ Ux = 0 ⇐⇒ x ∈ N (U)

yielding the very useful result that
N (A) = N (U) .

This means that if we can characterize the vectors in the nullspace of U (i.e., determine those
vectors x for which Ux = 0) then we have characterized the vectors in the nullspace of A (i.e.,
those vectors x for which Ax = 0). The condition for x ∈ N (U) is

Ux =
[
U1 U2

0 0

] [
xb
xf

]
= 0⇐⇒ U1xb = −U2xf ⇐⇒ xb = −U−1

1 U2xf

Thus,

x ∈ N (A) ⇐⇒ x ∈ N (U)
⇐⇒ U1xb = −U2xf

⇐⇒ xb = −U−1
a U2xf

⇐⇒ x =
[
xb
xf

]
=
[
−U−1

1 U2xf
xf

]
=
[
−U−1

1 U2

I

]
xf = Nxf

where

N =
[
−U−1

1 U2

I

]
∈ Rn×ν

v = n− r = dimN (A) .

The dimension of the nullspace of A, ν, is known as the nullity of A and is given by n− rank(A).

The ν columns of the matrix N are linearly independent and span the nullspace of A. Thus the
columns of A form a basis for N (A). Every nullspace vector x must be of the form x = Nxf showing
that the ν components of the ν-dimensional vector xf completely parameterizes the nullspace of A.

As mentioned, the columns of N , nk, k = 1, · · · , ν, provide a basis for N (A). We can mathematical
determine nk as follows. Define the canonical basis vector ek by

ek = (0 · · · 0 1 0 · · · 0)T

which is the vector with all zero components except for the value “1” for the k-th component. Now
note that taking xf = ek yields x = Nek = nk ∈ N(A).

nk = Nek =
[
−U−1

1 U2 ek
ek

]
=

[
n

(u)
k

ek

]
⇒ U1 n

(u)
k = −U2 ek

Example 1 continued.

Recalling a column permutation has been performed, we have x ∈ N (A) iff x̄ ∈ N (U), which is
true iff [

U1 U2

0 0

] [
x̄b
x̄f

]
=
[
0
0

]
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which gives the condition 1 3 3 2
0 3 0 1
0 0 0 0



x1

x̄2

x̄3

x̄4

 =


0
0
0
0


which, in turn, implies that

U1x̄b = −U2x̄f ⇐⇒
[
1 3
0 3

] [
x1

x2

]
= −

[
3 2
0 1

] [
x3

x4

]
.

To determine ν = n − 4 = 4 − 2 = 2 null spaces basis vectors, we set x̄f equal to e1 and e2 as
follows,

x̄f = e1 =
(

1
0

)
⇒ n1 =


−3
0
1
0

⇒ n1 =


−3
1
0
0



x̄f = e2 =
(

0
1

)
⇒ n2 =


−1
−1

3
0
1

⇒ n2 =


−1
0
−1

3
1


It is easily checked that An1 = An2 = 0. The two basis vectors form the columns of the matrix
N ∈ Rn×ν = R4×2,

N =
[
n1 n2

]
=


−3 −1
1 0
0 −1

3
0 1

 .
Note that a general nullspace vector x0 ∈ N (A) has the form

x0 = Nx̄f = x2 n1 + x4 n2 .

Whenever the consistency condition

cf = L̂fb = 5b1 − 2b2 + b3 = 0

is satisfied, then b ∈ R(A) and the system Ax = b has the particular solution xp determined above.
In this case, a general solution is given by

x = xp + x0 =


b1 − b2

0
1
3(b2 − 2b1)

0


︸ ︷︷ ︸

xp

+ x2


−3
1
0
0

+ x4


−1
0
−1

3
1


︸ ︷︷ ︸

x0 = Nx̄f = x2n1 + x4n2

Note that we have an uncountable infinity of possible solutions. ���

Lemma 4. Let A be m× n and b ∈ R(A). Then exists a unique solution to the system Ax = b iff
r = n.
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Proof: r = n ⇐⇒ ν = n− r = 0 ⇐⇒ dimN (A) = ν = 0 ⇐⇒ N (A) = {0}. �

Corollary 4a. When A is square, A ∈ Rn×n, then the system Ax = b has a unique solution for all
b ∈ Rn iff r = n. The solution is given by x = A−1b.

Proof: A straightforward consequence of Lemma 2 and Lemma 4, noting that r = n = m. �

Corollary 4b. If A ∈ Rn×m has m < n then a solution to Ax = b for b ∈ R(A) must be nonunique.
Furthermore, if r = m (so that A has full row rank), Ax = b must be (nonuniquely) solvable for all
b ∈ Rm.

Concluding Remarks

Via the use of Gaussian Elimination and LU factorization applied to an m× n matrix A, one can
directly determine the dimensions of all of the subspaces associated with A and basis vectors for
the range and nullspace of A. One can also do the same for the matrix found by transposing A,
AT .1

1Although we do not discuss it here, one can actually obtain bases for the range and nullspace of AT by a further
processing of the LU factorization found for A itself.


